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Abstract— The importance of solar photovoltaic (PV) systems has increased over the past ten years due to the solar PV industry's 
explosive growth. To ensure the reliable, safe, and efficient operation of residential PV systems, fault detection is crucial. Early 
classification of faults can improve PV system performance and reduce damage and energy loss. Many recent studies have focused 
on classifying and detecting PV faults but most of them are limited to specific reasons like Real-world data can be restricted, 
unbalanced, or include noise, all of which may decrease the effectiveness of ML models. This paper proposes a method for identifying 
and classifying both physical and electrical faults in the PV array system applying a machine learning (Random Forest) model to that 
is trained using a synthetic photovoltaic training database. Make use of a synthetic PV database opens the door to a more precise, 
effective, and scalable PV system by addressing the limitations of real-world data. MATLAB is used to create a synthetic database 
while scikit-learn tool in Jupyter Notebook is used to train an ML model are the two main steps in this paper. The performance of the 
proposed model is compared with the existing ML model and achieves the most effective algorithm offering higher accuracy in 
detection of 98.6% and classification accuracy is 94.2% for both physical and electrical faults after being successfully tested on real-
world datasets and trained on historical data from the PV array system (PV Database).  
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INTRODUCTION  

Fault identification is crucial for power grid operation. Utilities are working to reduce outages 
caused by natural events, which can lead to long interruptions and economic impact on 
customers [1] [2]. The cost of a one-hour outage ranges from USD 3 to USD 82,000 depending 
on the customer type and time of year [3]. Predicting faults and their duration can reduce 
unplanned outages and enable utilities to deploy maintenance crews and sequence operations 
efficiently [4]. Balanced or unbalanced faults are the two general categories for physical 
problems in power systems [5]. Unbalanced or asymmetrical faults, which might be series or 
shunt-type faults, are often encountered faults. Regarding fault detection methods, 
many machine-learning (ML) approaches are currently developed and published in the field of 
research [7]. The detection and classification of common faults, (like open circuits, short 
circuits, partial shading, soiling, and deterioration, as well as complex problems, such as 
multiple faults, have shown good competency in this trained model. Much research on 
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machine-learning (ML) methods for fault detection and classification has been developed, and 
they have shown good performance in finding both common and complicated faults. However, 
these methods frequently rely on simulated or measured data, which could not accurately 
describe the intricate features of PV systems in the real world [8]. Utilizing a real-time 
implementation of the described techniques, only a small number of works have been 
experimentally validated. ML-based models are often trained and tested on measured or 
simulated data, which can be collected using MATLAB/Simulink.  A fault detection system often 
consists of several tasks, including the localization, identification, classification, and detection 
of faults [9]. To address this problem, techniques for locating PV system faults have been 
developed that make use of PV yield databases, mostly based on output power. The use of 
machine learning (ML) to improve these techniques is yet largely unexplored. Open databases 
are not suited for accurately identifying faults since they are highly susceptible to data entry 
mistakes, and noise-full data such as PVoutput.org. An alternate method provides control and 
precision for training machine learning models by modeling PV systems and adding faults to 
create synthetic data. Compared to open databases containing historical data, synthetic 
databases offer advantages [10]. First of all, it removes the need for PV system owners to 
precisely enter the parameters of their system design, guaranteeing accurate and error-free 
system parameter input. Second, it is possible to balance a synthetic training database more 
successfully in terms of both Healthy and faulty systems. This study, on the other hand, had 
783418 data points, which is more than 32 times as numerous. Other features such as 
operational temperature, array current, array voltage, fill factor, and others were provided in 
addition to irradiance, system power, and ambient temperature. When it comes to uncommon 
fault types that might have a major influence on PV system performance and safety, historical 
data frequently tends to be biased toward operating systems in a Healthy state. Machine 
learning models may be trained to identify and classify faults more accurately, by manually 
modifying the balance in the training database, particularly the less common ones [11]. A 
Random Forest machine learning model built on a synthetic photovoltaic (PV) training 
database is used in our work. AUC curve, F1-score, specificity, recall, accuracy, and precision 
are some of the performance matrices that are used to compare the Random Forest model's 
performance to that of other models. The model's output is also graphically represented 
through the use of ROC curves and confusion matrices. Hyperparameter tuning is necessary 
to improve the model's performance and its predictive power. Scikit-learn Python library is an 
extensible tool for machine learning applications it creates a predictive model that is both 
effective and accurate for fault identification and classification. The sequence of this paper is 
as stated below: Sec 2 explain common residential solar system faults and synthetic database 
generation. Sec 3 explains in more detail of proposed ML model construction. Sec 4 covered 
the performance of the ML models using the synthetic database. Finally, to summarize, the 
important conclusion is discussed in sec 5. 

 

FAULT IDENTIFICATION AND PARAMETER EXTRACTION 

A. Faults in a PV Array 

Faults are a common source of operational difficulties for photovoltaic (PV) systems; the most 
common types are Line to Line (L-L) and Ground Faults, which can result in short circuits and 
low power output. Although not a typical fault, inverter failures, such as inverter clipping, are 
still regular, impacting about 22% of residential PV systems and limiting maximum power [12]. 
broken string faults are less frequent but significant since they can cause open circuits and 
decreased power output. These faults can be caused by problems such as faulty solder 
connections or broken cables [13]. 
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Figure 1. Common residential PV faults 

The electrical components of PV systems are the main source of these issues. Physical faults 
that impact system performance include broken cells or connections brought on by shade or 
poor manufacture. For instance, shading's effect on system efficiency varies. This study 
focuses on identifying and classifying undetected faults such as short circuits and routine 
failures to improve system performance, even though it admits the difficulty of diagnosing these 
problems, particularly when inverter faults and short circuits may be confounded [14]. 

 

B. Dataset Parameter for PV Modeling and Analysis 

To enhance the efficiency of fault detection and classification in photovoltaic (PV) systems, a 
new synthetic training database using MATLAB PVMD Toolbox was proposed. This database 
resembles both optimal and unfavorable system ages and types of meteorological data. The 
database contains hourly weather data for the Jiangsu station in which a random 
simulation created over 48-hour profiles of days picked from there. On occasion, the 
consequences of low irradiance were also mitigated. By combining a variety of healthy and 
faulty system states, this method increased the efficacy of machine learning. The main 
components of this database simulations are "CELL," which stands for a single solar cell and 
the number of single solar cells that must be simulated; "MODULE," which represents mounted 
panels and describes the unit part of the structural part of a PV system; "WEATHER," which 
holds environmental conditions such as temperature and humidity in the weather, crucial for 
realism in simulations; "ELECTRICAL," which contains the electrical characteristics of the 
system that must be simulated, aiding in performance analysis; and "CONVERSION," which 
refers to the conversion of data into a format that is more useful for the PVMD Toolbox. These 
are fixed, except for the weather data, which is added to increase the simulation performance.  
The first factor was the addition of a dynamic factor to improve its applicability in machine 
learning database applications under a variety of weather conditions, especially low light 
conditions. This factor includes hourly irradiance and input from the previous day.  As shown 
in Table 1 below crucial cell and module parameters, as well as the weather and temperature, 
are listed. These factors are essential to the synthetic database that we utilized to train our 
machine-learning algorithm to identify and classify faults in PV systems. 
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Figure 2.  Schematic diagram of PMVD toolbox 

Table 1. System Parameters for Database 

PV System Parameters 

Cell and module parameters Weather and thermal parameters 
Parameters Values Parameters Values 
Cell type MonoPERC Longitude 51.955278 
Module tilt 35* Latitude 4.347778 
Module azimuth 15* Efficiency of PV module 0.22 
Module height above ground 75 cm Temperature Coefficient 0.00321*C 
Number of cell rows 10 Glass thickness 0.35cm 
Number of cell columns 8 Electrical and Conversion Parameters 
Module thickness 0.4 cm Parameters Values 

Module cell spacing 0.2 cm Shading loss due to 
metallization 2% 

Module edge spacing 0.5 cm Metal grid resistance 0.0055 
Cell length 16 cm Number of bypass diodes 2 
Cell width 16 cm Inverter type hybrid 
Module albedo 0.15 Inverter capacity 4500W 

  Number of modules in 3 
  Number of modules in series 6 
  Cable losses 0.80% 

 
Additionally, a new feature called the power ratio has been included to provide insights into the 
health of the system and greatly increase the fault detection model prediction accuracy. Figure 
3, which shows the Chi-square test results for seven important features that have a significant 
impact on the system's performance analysis and fault diagnostics, will be presented to 
graphically describe the impact of each variable. 
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Figure 3. Chi-square test values for 7 feathers 

 

C. Database Result 

To simulate various faults, several system scenarios were simulated using the PVMD Toolbox 
[15]. A comparison of several fault classes for the same system under the same meteorological 
conditions is shown in Figure 4. For training machine learning models, the training database, 
which included 25,000 scenarios, collected important variables such as system age, system 
power output, and weather conditions. A 48-hour weather attribute, a matching power output 
profile, and the system status are all included in each database scenario, along with hourly 
values for the connected variables. In the database, there are 40% faulty systems and 60% 
Healthy systems. In further cases, 25% are caused by broken cells, broken string, Ground 
faults, and Line-to-Line faults combined. Zero efficiency faults were initially listed but were later 
deleted since their 100% detection rate made them uninteresting to study. 

 

Figure 4. Photovoltaic Fault Analysis with AC Power Output 

 

 PROPOSED MODEL 

A. Feather Selection and Extraction 

In order to train an ensemble learning model more specifically, a Random Forest (RF) 
algorithm to detect faults in PV systems, this study uses a synthetic database. Nineteen 
characteristics that represent the various circumstances of PV arrays during normal operation 
and faults serve as the basis for the model. In order to improve the model capacity to accurately 
classify faults, an initial feature selection technique is used to simplify the dataset by 
eliminating less useful information. The primary approach used for fault detection is the RF 
model. Its effectiveness in classifying faults in PV systems is then verified by comparing its 
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performance against that of the other algorithms in the ensemble, which include Decision Trees 
(DT), Support Vector Machines (SVM), and Neural Networks (NN). 

 

Figure 5. Workflow Diagram for Predictive Machine Learning Model Modified From [16] 

Voltage, temperature, and performance measurements are included in the dataset, also known 
as matrix X. Each row in the matrix denotes an observation, and each column a characteristic. 
Labeled data is used to train the model, enabling it to distinguish between PV states that are 
functional and those that are not. The predictive accuracy of the model is verified by contrasting 
its fault predictions with current conditions using a separate, unlabeled test dataset. The 
predictive model's workflow is depicted in Figure 5, which highlights the critical roles that 
feature selection, data preparation, and repeated retraining serve in the model evaluation 
process. 

B. Optimized Model 

It is important to assess the kind of data that is available and select the appropriate machine-
learning method. The study employed discrete, labeled data for PV fault classification and 
detection. As a result, a supervised learning algorithm that is capable of classifying data should 
be applied. The Decision tree (DT), Random Forest (RF), support vector machine (SVM), and 
neural network (NN) are the most widely used machine learning methods in the field of PV 
fault identification and classification. This research uses a synthetic PV training database from 
sec 2 to train four algorithms. The final model is developed through the Python Jupyter 
Notebook. Metrics like recall, accuracy, specificity, F1-score, precision and AUC are used to 
evaluate performance; confusion matrices are used to display results. To improve model 
performance, hyperparameter tuning requires to modifying parameters particular to certain 
algorithms. 

Random Forest 

Since its introduction in 2001 by Leo Breiman, the Random Forest (RF) algorithm has grown 
to be one of the most popular machine learning methods [17]. The purpose of this work is to 
identify faulty operations and classify certain fault types using the Random Forest (RF) 
algorithm in residential PV systems. Both binary and multiclass classification are considered 
necessary to accomplish this aim. At first, several fault types are combined into one 'faulty' 
class, whereas the 'Healthy' class is constructed up of standard operating systems. The study 
uses multiclass classification to evaluate the recommended method's capacity to correctly 
classify various kinds of faults. 
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Analysis Of RF Tree Creation 
 Multiple Decision Trees (DTs) are built using the Random Forest (RF) algorithm, an ensemble 
learning technique, using resampled datasets from the actual training data. The Classification 
and Regression Tree (CART) algorithm creates each DT, and to improve accuracy and 
decrease correlation between DTs, a Random feature selection technique is used. When 
creating an RF tree, a given total feature count is taken into account. The best possible split-
point approach is then used to choose a Random subset of features for node selection.  After 
RF tree creation, Decision trees are used to classify the sensed and transmitted data. This 
process begins with a root node and repeatedly splits nodes X{1} and X[2] based on feature 
best values lower or higher than 845.457 until a stopping requirement, such as a certain tree 
depth, is satisfied. The best splitting is calculated depending on the Gini level to gradually 
reduce the weighted average of 0.49 for purer nodes. A minimum number of samples required 
to split a node or create a leaf node might be one of the stopping criteria. 

 

Figure 6. Tree Structure of The RF Model with Three Depths 

A group of Randomized Decision trees, each trained on a subset of features and a 
bootstrapped sample of the training set, is called a Random Forest. Each tree contributes to 
the prediction of the most likely class for each sample, resulting in a strong classification from 
the total of the data gathered from individual trees.  

 

Figure 7. Predicted System Status for RF Model 

This method improves overall accuracy by reducing the over-reliance on certain feature 
subsets that may be found in individual Decision trees. By contrast, even if a single Decision 
tree performs quite well on training data, it frequently fails to generalize to test data. 
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Other ML Model 

Three machine learning approaches are compared with our proposed method: DT, SVM, and 
ANN (more specifically, a multilayer perceptron feedforward artificial neural network). Random 
forest (RF) successfully minimizes overfitting and often achieves greater accuracy than other 
machine learning models as shown in accuracy analysis Table 1. 

Table 2. Accuracy Analysis Between ML Models 

Model Data type Accuracy 

RF Supervised Detection = 98.6% 
Classification = 94.2% 

DT Supervised Detection = 93.1% 
Classification = 89.3% 

SVM Supervised Detection = 97.1% 
Classification = 93.4% 

NN Supervised Detection = 97.1% 
Classification = 94.0% 

By employing multiple Decision Trees, each with a distinct feature subset, Random Forest (RF) 
reduces over-fitting that is sometimes present in single Decision Trees and enhances 
generalization. In contrast to Support Vector Machines (SVM) and neural networks, RF 
improves performance on both linear and non-linear data by adding variety through its 
ensemble technique. 

 
C. Performance Metrics Evaluation 
A confusion matrix is used to critically evaluate a machine learning model that predicts system 
problems by classifying predictions into True Positives (TP), False Positives (FP), True 
Negatives (TN), and False Negatives (FN). Whereas TNs are correctly detected healthy 
systems, TPs are correctly identified problems. On the other hand, flaws overlooked by the 
model are known as FNs, while good systems are known as FPs when mislabeled [18]. 
 

 

Figure 8. RF Model Confusion Matrix for Faulty System 

 
To improve the model's F1 score, accuracy, recall, precision, and Area Under the Curve (AUC), 
hyperparameter tweaks are guided by these measures, which guarantee a balanced 
performance across different fault prediction characteristics. These metrics are essential to 
model optimization procedures because a larger ratio of TP and TN to FP and FN denotes 
improved model performance [19]. 
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Accuracy:    	(𝑻𝑷	%	𝑻𝑵)
(𝑻𝑷	%	𝑻𝑵	%	𝑭𝑷	%	𝑭𝑵)

                (3) 

Recall (Sensitivity, True Positive Rate):  𝑻𝑷
	(𝑻𝑷	%	𝑭𝑵)

                    (4) 

Precision (Positive Predictive Value):  𝑻𝑷
(𝑻𝑷	%	𝑭𝑷)

                     (5) 

Specificity (True Negative Rate):   𝑻𝑵
(𝑻𝑵	%	𝑭𝑷)

                     (6) 

   F1 Score:   )
!

"#$%&'&()	%	
!

*$%+,,

                                          (7) 

 
The model's total discriminatory power is further evaluated by considering the Area Under ROC 
curve (AUC). A careful balance between model complexity and generalization to new data is 
necessary, as evidenced by the small variation in ROC curves between training and validation 
data that was observed. This study ensures that the model works well in practical applications 
by laying the foundation for future research and ongoing enhancements. 

 

Figure 9. ROC Curve of RF Model for Faulty Sets 

 

ML MODEL PERFORMANCE 

The Random Forest (RF) model designed for fault identification using data from the PMVD 
toolbox is shown in the flowchart and the specifics mentioned in Chapter 3. After giving careful 
consideration to each component's requirement, a flowchart is created as shown in Figure 4.1. 
This begins with gathering data using the PMVD toolbox, which is a collection of tools for 
predictive maintenance, and then moves on to pre-processing the data so that it can be 
analyzed. When a fault is strike this is decision point, the system determines whether fault 
occur or not if not, the process will end because there is no fault occur and move to data 
collection box again. If yes then it split for a testing set of labeled data is generated to assess 
the model detection efficiency. This results in improved data, which serves as the test set to 
evaluate how well the RF model performs in terms of generalization and accuracy. For 
classification the system gathers similar events, labels them in the similar duration, and creates 
a complete report that includes information on the fault causes and effects.  The prepared data 
are fed into a Random Forest (RF) model to classify possible faults, a machine-
learning technique recognized for its high classification performance. Hyperparameter 
adjustment is a crucial step toward better predictive performance if the dataset is further refined 
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and applied to the RF model. The result is an improved RF model, especially for precise 
problem detection in the system it monitors. 

 

Figure 10. Flowchart of RF Model 
  
 The data that follows is divided into test, validation, and training sets to address any bias in 
hyperparameter optimization. A validation set avoids hyperparameter biasing, which results in 
a more precise representation of model performance during final testing, even if training and 
test sets boost model performance. Variance is ensured by the widely used division of 60% 
training, 20% validation, and 20% test, even if class balance may vary somewhat within sets. 

 
Table 3.  Original Feature of The Mean and Standard Deviation 

Dataset Training Validation Test 

Irradiance W/m2   [251, 201] [254, 205] [251, 201] 
Temperature °C [14.6, 8.2] [14.6, 8.2] [14.6, 8.2] 
Azimuth° [0.2, 51.3] [-2.2, 51.4] [2.1, 51.3] 
Elevation° [26.1, 16.9] [26.3, 17.1] [26.3, 16.7] 

Power W  [1503, 1410] [1506, 1401] [1505, 1411] 

Duration  [2.30, 5.45] [2.42, 5.56] [2.29, 5.43] 

Faults were simulated at different periods between 09:00 and 15:00, taking into account the 
effect of variable irradiance on power production, to improve the model fault prediction 
accuracy. To control complexity, models were initially trained on certain hourly data. The 
objective of the random selection was to include possible low irradiance times, which are 
known to impede fault identification [20]. Additional data, such as power output, irradiance from 
certain hours (09:00, 13:00, and 15:00) the day before, and the power ratio (output to 
irradiance) were added to handle irradiance fluctuation. This improved fault identification under 
various irradiance scenarios by expanding the feature set to 19. 
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Table 4. Shows The Calculated Feather for The Train Model 

Case Number of Cases Features 

1A 6 Irradiance, Ambient Temperature, Sun (azimuth + 
elevation), System (Power + Age) 

1B 13 

1A features + Irradiance Day before, Irradiance at 2 
pm, System power day before, System power at 2 
pm, Power ratio, Power ratio day before, Power ratio 
2 pm 

1C 16 
1A and 1B features + Irradiance at 9 am, Irradiance 
at 3 pm, System power at 9 am, System power at 3 
pm, Power ratio at 9 am, Power ratio at 3 pm 

 
 
A.   Fault Detection Results 
In this study, binary classification is used for fault detection where the Random Forest (RF) 
model beats SVM, DT, and ANN, demonstrating efficacy even in the presence of nineteen 
intricate characteristics. Table 5 and Figure 4.2 illustrate RF's accuracy, which shows that even 
with a longer training time, it is still superior at differentiating between healthy and faulty 
systems.  The typical problem of real-world datasets bias towards Healthy systems was solved 
by using a synthetic database to guarantee class balance. We varied the ratio of the faulty-to-
total system from 1% to 70% while keeping a consistent dataset size of 15,000 data points, 
taken from an initial pool of 25,000, to thoroughly assess model performance across different 
dataset balances. Because there were few faulty systems, a dataset with 14,286 data points 
was employed to achieve the greatest failure ratio of 70%. 

Table 5. RF Model Results for Different Feature Values on The Test Set 

Metric F1 Score Recall Specificity Precision Accuracy AUC 

6 features 0.674 0.651 0.821 0.692 0.75 0.731 

13 features 0.752 0.73 0.863 0.784 0.801 0.792 

19 features 0.756 0.733 0.879 0.786 0.819 0.791 

 

Figure 11. RF model confusion matrix on test set including 6, 13, and 19 features 
 

To determine which model performed best at various fault ratios, our investigation examined 
four models with varied dataset balances. In datasets with 30% and 50-70% fault rates in 
particular, the Random Forest (RF) model performed exceptionally well, demonstrating its 
durability and dependability in binary classification tasks. The SVM model works better at first 
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in datasets with a fault ratio of 0–20%, but it becomes less successful in datasets that are more 
balanced. The Neural Network is the best performer with a 30% fault ratio. All dataset balances 
and fault ratios, however, consistently demonstrate that the Random Forest model performs 
better. These variant highlights how flexible the Random Forest is, and Figure 11 shows how 
dominant it is using F1-scores and AUC comparisons. 
 

Table 6. RF Model Result on Test Set for Changing Dataset of Faulty System Ratio 

Metrics Accuracy Recall Precision Specificity F1 AUC 
1% 0.996 0.292 1.00 1.00 0.452 0.646 
10% 0.929 0.349 0.967 0.999 0.512 0.674 
30% 0.801 0.457 0.847 0.963 0.594 0.71 
50% 0.817 0.836 0.799 0.786 0.819 0.808 
70% 0.851 0.929 0.844 0.621 0.893 0.771 

 
 

 

Figure 12. RF model confusion matrix on test set for 1% to 70% of the dataset faulty 
systems 

 
 

Figure 13. AUC and F1 score with changing fault ratio 
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B. Fault Classification Results 

We used OVO and OVR approaches in our work on multi-classification for residential PV 
system failures, which allowed us to divide the faults into four subcases. The Random Forest 
(RF) model demonstrated higher recall, F1, and accuracy scores across five fault classes 
Table VII, outperforming SVM and neural networks in both OVO and OVR techniques. Notably, 
the RF model consistently demonstrated high scores in identifying "Broken String" faults. 
 

Table 7. RF Model Performance Using Multi-Classification on Test Set (OVR classifier) 

Class Recall Score F1 Score Precision Score 
Healthy 0.526 0.605 0.712 
Line-to-Line 0.496 0.504 0.512 
Ground 0.654 0.526 0.44 
Broken Cell 0.586 0.645 0.716 
Broken String 0.952 0.936 0.92 
Average 0.643 0.643 0.66 

 
 

Table 8. RF Model Performance Using Multi-Classification on Test Set (OVO classifier) 
Class Recall Score F1 Score Precision Score 
Healthy 0.55 0.62 0.71 
Line-to-Line 0.508 0.512 0.519 
Ground 0.639 0.519 0.441 
Broken Cell 0.605 0.663 0.731 
Broken String 0.952 0.94 0.929 
Average 0.62 0.649 0.671 

 
 

 

Figure 14. RF model confusion matrix of (a) OVO (b) OVR 
 
In order to improve overall model performance, "Line-to-Line" and "Ground" faults were 
integrated into a single "Short-Circuit" category to overcome the difficulty of differentiating 
between them. Even though there is still some ongoing challenge in correctly recognizing 
Healthy systems, this strategic tweak together with the use of a balanced dataset of 12,500 
samples enhanced fault classification, especially for "Healthy" and "Broken Cell" classes 
Figure 14. 
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Table 9. RF Model Performance Using Multi-Classification on a Test Set with Collective 
Short Circuit Faults Dataset (OVO classifier) 

 

Table 10. RF Model Performance Using Multi-Classification on a Test Set with Collective 

Short Circuit Faults Dataset (OVR classifier) 

Class Recall score F1 score Precision score 
Healthy 0.635 0.565 0.723 
Short-Circuit 0.767 0.928 0.653 
Broken Cell 0.658 0.572 0.774 
Broken String 0.95 0.978 0.925 
Average 0.752 0.761 0.769 

 
 

 
Figure 15. RF Model Confusion Matrix Using a Test Set of Datasets with Short Circuit Fault 

Class of OVO and OVR 
 

 
 

 
Figure 16. Rf Model Confusion Matrix of Only (OVR) Classifier of   

Class Recall score F1 score Precision score 
Healthy 0.624 0.564 0.751 
Short-Circuit 0.772 0.929 0.682 
Broken Cell 0.669 0.582 0.789 
Broken String 0.948 0.989 0.936 
Average 0.749 0.782 0.792 
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We reduced the maximum fault resistance from 1000Ω to 100Ω to address the 
misclassification of healthy systems as short-circuit faults. This improved model performance 
and fault classification, particularly for the healthy and short-circuit classes. Figure 4.7 shows 
how clearly fault types could be distinguished in the Confusion Matrices for both resistance 
levels, indicating that the Random Forest model OVR algorithm worked best. This tactical 
modification highlights the advantage of the Random Forest model in fault classification, which 
is confirmed by comparable performance metrics in Table 11. 

 
Table 11. RF Model Performance Using Multi-Classification on a Test Set with Collective 

Short Circuit Faults Dataset of RFault, Max=100Ω 

Class Recall Score F1 Score Precision Score 
Healthy 0.639 0.564 0.731 
Short-Circuit 0.782 0.936 0.659 
Broken Cell 0.662 0.579 0.781 
Broken String 0.956 0.982 0.932 
Average 0.760 0.765 0.775 

 
Table 12. RF Model Performance Using Multi-Classification on a Test Set with Collective 

Short Circuit Faults Dataset of RFault, Max=1000Ω 
Class Recall Score F1 Score Precision Score 
Healthy 0.656 0.590 0.731 
Short-Circuit 0.785 0.940 0.682 
Broken Cell 0.671 0.602 0.870 
Broken String 0.963 0.981 0.936 
Average 0.768 0.778 0.804 

 
CONCLUSION 

In the work, model that relies on machine learning exhibited encouraging results in detecting 
and classifying faults in residential solar power systems, even in difficult situations that haven't 
been by earlier research before. The Random Forest model performed well in binary fault 
detection, with 91.1% accuracy at a 50% faulty system balance and 94.6% accuracy at a 70% 
faulty system ratio. For multiclass fault classification, the model with the one-vs-rest classifier 
obtained an average (Recall: 0.778, F1-score: 0.768, Precision: 0.804). Particularly, the short-
circuit fault class had an appropriate F1 score of 0.785, whereas broken string faults came in 
with an outstanding F1 score of 0.963. The study focuses on how the model's simplicity and 
the advantages of synthetic databases in getting a defined balance dataset make it a feasible 
option for residential PV systems. However, because different studies have different dataset 
sizes, features, and fault types, it can be difficult to compare accurately with the research that 
already exists. 

Table 13. Summary of Existing Literature on PV Fault Detection 

Ref. Study Approach Data Source Advantages Limitations 

[21] [22] 
Machine 
Learnin
g 

NN + Levenberg–
Marquardt 

Real-time data 
system 

Detection inaccuracy is 
under 3%. Real time fault 
location, High power 
accuracy and determine fault 
type with distant source of 
end tolerance 

The training 
procedure has a 
long completion 
time. Fault timing 
is not examined 
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[23] NN-based Real-time data 
system 

when the network topology 
changes, the findings for 
predicting the fault distance 
from the substations are 
optimal. Noise tolerance is 
high. 

Fails to precisely 
detect faults 
in live data 
streams coming 
from the 
Power grid. 

[24] CNN-based Real-time data 
system 

Diverse fault types, fast re-
closures, and complicated 
transient states after a fault 
event make real-time fault 
location 

Research focus 
on fault location, 
not duration 

[25] RF + DT Open PV 
Database 

The accuracy of identifying 
the location of the fault is 
91% when there are few no 
of buses (5-7%). 

[26] RF PV system data 

fault detection algorithm has 
an accuracy of 90.69%. The 
fault location algorithm has a 
performance of 0.30% on 
average. carried out on a 
large-scale distribution 
feeder 

[27] KNN PV system data 

The accuracy of fault location 
identification is 98.70%. 
Absolute error ranges 
between 0.61 to 6.5% 

A model trained 
and tasted only 
on a PV system 

Propose
d method 

Random forest 
model 

Synthetic 
database 

Error-free and controlled 
data. Balanced dataset with 
a healthy and faulty system.  
Scalable for training and 
experimentation 
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