Implementation of Apriori Algorithm for Data Mining on Sales Transaction Data
Abstract viewed: 343 times
pdf downloaded: 263 times
Abstract
Angkasa Mart Store is currently experiencing a decline in sales for specific products, leading to the implementation of the Apriori Algorithm to create bundled offerings that combine less popular items with top-selling products, aiming to revitalize sales and promote the underperforming inventory. Following the CRISP-DM methodology, the study analyzes sales transaction data from June to July 2022, covering 65,892 purchased items, to extract ten critical association rules essential for devising bundled packages. The study's findings propose two strategies for package composition: first, the development of bundled packages comprising strongly related products, identified through comprehensive data analysis and positively received by the store; second, the introduction of 21 bundled packages consisting of products with a relatively weaker relationship, effectively expanding consumer choices and encouraging additional purchases within the store. By implementing the Apriori Algorithm and adhering to the CRISP-DM methodology, this study effectively formulates bundled product packages for Angkasa Mart Store, addressing the challenge of declining sales and contributing to an overall improvement in business performance and customer satisfaction.
References
I. H. Witten, E. Frank, and M. A. Hall, “Data Mining Practical Machine Learning Tools and Techniques”, Third Edition. 2011.
M. J. A. Berry and G. S. Linoff, “Data Mining Techniques for Marketing, Sales, and Customer Relationship Management”, Second Edition. Indianapolis: Wiley Publishing, 2004.
R. V. Vohra, Prices and Quantities: Fundamentals of Microeconomics. Cambridge University Press, 2020.
Dr. M. A, Marketing Management. Bangalore: Archers and Elevators Publishing House, 2019.
E. Angliara, “Pengembangan Modul Bundling Menggunakan Association Rule Algoritma Apriori Pada Sistem Informasi Penjualan Adien Mart Sebagai Promosi Penjualan Barang Kurang Laris,” 2017.
M. Maariful and W. Setyaningsih, “Sistem Pendukung Keputusan Dalam Penentuan Bundling Penjualan Barang dengan Metode Apriori”, 2015.
I. N. Muhammad, M. F. Islam, and A. Nugroho, “Prediksi Produk Bundle Pada Promo Dengan Algoritma Apriori Menggunakan Association Rule”, Jurnal Ilmu Komputer dan Bisnis, vol. 12, no. 2, pp. 178–188, Nov. 2021.
A. Fauiyyah, “Algoritma Apriori dalam Menentukan Product Bundling” 2019.
S. Kuswayati and D. Tjahyadi, “Market Basket Analysis Menggunakan Algoritma Apriori Untuk Penetapan Strategi Bundling Penjualan Barang”, 2011.
C. Zong, R. Xia, and J. Zhang, Text Data Mining. 2021.
W. K. Ng, M. Kitsuregawa, J. Li, and K. C, “Advances in Knowledge Discovery and Data Mining”, 10th Pacific-Asia Conference, April 2006.
Y. Vasiliev, Python for Data Science a Hands-On Introduction. 2022.
B. Santoso, “Data Mining: Teknik Pemanfaatan data Untuk Keperluan Bisnis”, 2007.
Oracle, “Apriori”, Oracle. Nov. 03, 2022.
D. Sarkar, R. Bali, and T. Sharma, “Practical Maching Learning with Python”, 2014.
Copyright (c) 2023 Hana Bernika Sabila, Feri Candra
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.